Reverse triple I method of restriction for fuzzy reasoning*

SONG Shiji ** and WU Cheng

(Department of Automation, Tsinghua University, Beijing 100084, China)

Received August 14, 2001; revised October 8, 2001

Abstract A theory of reverse triple I method of restriction for implication operator R_0 is proposed. And the general computation formulas of infimum for fuzzy modus ponens and supremum for fuzzy modus tollens of α -reverse triple I method of restriction are obtained respectively.

Keywords: fuzzy reasoning, implication operator R_0 , reverse triple I method of restriction.

Since Zadeh^[1] proposed the method of compositional rule of inference (CRI) for fuzzy reasoning, the method has been generalized respectively from diversified aspects in Refs. $[2 \sim 4]$. Generally, because this method does not have the reversibility properties, the MP-approximation property of the method of CRI was studied using certain common compositional operators and implication operators in Ref. [5]. Moreover, in order to avoid some drawbacks of the method of CRI, Wang^[6] proposed first triple I method with total inference rule that utilizes the implication operator in every step of the reasoning. Afterwards, the theory of restriction degree of triple I method was further presented by the authors^[7], its generalization form should be expressed as the following optimal problem.

For any $\alpha \in (0,1]$, $A \in \mathcal{F}(X)$, $B \in \mathcal{F}(Y)$, and $A^* \in \mathcal{F}(X)$ (or $B^* \in \mathcal{F}(Y)$), seek the optimal $B^* \in \mathcal{F}(Y)$ (or $A^* \in \mathcal{F}(X)$) satisfying

$$(A(x) \to B(y)) \to (A^*(x) \to B^*(y)) \leqslant \alpha,$$
(1)

for any $x \in X$ and $y \in Y$, where $\mathcal{F}(X)$ and $\mathcal{F}(Y)$ denote respectively the collections consisting of all fuzzy subsets of X and Y. And for the implication operator $R_0: [0,1]^2 \rightarrow [0,1]$:

$$R_0(a,b) = \begin{cases} 1, & a \leq b, \\ a' \vee b, & a > b, \end{cases}$$
 (here $a' = 1 - a$).

General computation formulas of supremum for fuzzy modus ponens (FMP) and infimum for fuzzy modus tollens (FMT) of α -triple I method are obtained respectively in Ref. [7].

In this paper, the theory of reverse triple I method of restriction is proposed, its generalization form should be represented as the follows.

Under the hypotheses of (1), seek the optimal $B^* \in \mathcal{F}(Y)$ (or $A^* \in \mathcal{F}(X)$) such that $(A^*(x) \rightarrow B^*(y)) \rightarrow (A(x) \rightarrow B(y)) \leq \alpha$

$$(A^*(x) \to B^*(y)) \to (A(x) \to B(y)) \leqslant \alpha,$$
(2)

for any $x \in X$ and $y \in Y$.

The computation formulas of infimum for FMP and supremum for FMT of α -reverse triple I method of restriction are given respectively, using the implication operator R_0 in this paper.

1 Infimum for FMP of α -reverse triple I method of restriction

Now, we consider the generalization problems of reverse triple I method of restriction, i.e. for given $\alpha \in (0,1]$, seek the optimal solution satisfying (2). At first, for the generalization problem of FMP, we give the following principle of restriction of α -reverse triple I method.

Principle of restriction for α -reverse triple I FMP. Suppose that X and Y are non-empty sets, $A, A^* \in \mathcal{F}(X)$, $B \in \mathcal{F}(Y)$. If B^* is the minimal fuzzy set in $\mathcal{F}(Y)$ to satisfy (2), then B^* is called the α -solution of (2) for the reverse triple I FMP.

Remark 1. For any $y \in Y$ when $B^*(y) \equiv 1$, the left side of (2) will always take its minimal value $R_0(A(x), B(y))$; when $B^*(y) \equiv 0$, it will always

^{*} Supported by the National Natural Science Foundation of China (Grant Nos. 60074015, 60004010) and Research Fund at Tsinghua University (Grant No. JC2001029)

^{**} E-mail: shijis@cims. tsinghua. edu. cn

take its maximal value

$$(A^{*}(x))' \rightarrow R_{0}(A(x), B(y))$$

$$= \begin{cases} 1, & (A^{*}(x))' \leq R_{0}(A(x), B(y)), \\ A^{*}(x), & (A^{*}(x))' > R_{0}(A(x), B(y)), A^{*}(x) > R_{0}(A(x), B(y)), \\ R_{0}(A(x), B(y)), & (A^{*}(x))' > R_{0}(A(x), B(y)), A^{*}(x) \leq R_{0}(A(x), B(y)). \end{cases}$$

$$(3)$$

By (3), when
$$(A^*(x))' > R_0(A(x), B(y))$$

and

$$A^*(x) \leq R_0(A(x), B(y)),$$
 (4)

the maximal value of the left side of (2) is $R_0(A(x), B(y))$, and its minimal value is always $R_0(A(x), B(y))$. So, if (4) holds, for any $\alpha \in [R_0(A(x), B(y)), 1]$, the minimal fuzzy set in $\mathcal{F}(Y)$ satisfying (2) is $B^*(y) \equiv 0$. If (4) does not hold, for the generalization problem of FMP, the range of α should be confined as

$$\alpha \in (R_0(A(x), B(y)), 1). \tag{5}$$

Furthermore, we have the formula of infimum for FMP of α -reverse triple I method of restriction as follows.

Theorem 1. (formula of infimum for FMP of α -reverse triple I method of restriction 1) Suppose that X, Y are non-empty sets, A and $A^* \in \mathcal{F}(X)$ and $B \in \mathcal{F}(Y)$. For any $y \in Y$, if $x \in E_y$, then the infimum $B^*(y)$ consisting of fuzzy sets in $\mathcal{F}(Y)$ to satisfy (2) is determined by

$$B^{*}(y) = \sup_{x \in E_{y} \cap K_{y}} [A^{*}(x) \wedge (R_{0}(A(x), B(y)) \vee \alpha')]$$

$$^{*} \chi_{E_{y} \cap K_{y}}$$

$$+ \sup_{x \in E_{y} - K_{y}} [A^{*}(x) \wedge (R_{0}(A(x), B(y))]$$

$$^{*} \chi_{E_{x} - K_{y}},$$
(6)

where $K_y = \{x \in X \mid A^*(x) > \alpha \}$ and $E_y = \{x \in X \mid (A^*(x))' \leq R_0(A(x), B(y)) \}$.

Proof. For any $y \in Y$, we will first prove: any $C(y) \in \mathcal{F}(Y)$ with $C(y) > B^*(y)$ must satisfy (2). For $x \in E_y$, we will discuss in different cases as follows.

Case 1. If $x \in E_y \cap K_y$, then using $B^*(y)$ determined by (6), we have

$$C(y) > B^*(y)$$

$$\geqslant A^*(x) \wedge (R_0(A(x), B(y)) \vee \alpha').$$
(7)

Further, the discussion will be partitioned again into two possible cases.

(i) If
$$A^*(x) \leq C(y)$$
 then $R_0(A^*(x), C(y)) \equiv 1$, consequently
$$M_{xy} = R_0(A^*(x), C(y)) \rightarrow R_0(A(x), B(y))$$

$$= 1 \rightarrow R_0(A(x), B(y))$$

$$= R_0(A(x), B(y)) \leq \alpha.$$

(ii) If
$$A^*(x) > C(y)$$
, then $R_0(A^*(x), C(y)) = (A^*(x))' \lor C(y)$. By (7), we have $C(y) > B^*(y) \ge R_0(A(x), B(y)) \lor \alpha'$.

(8)

This implies that $(C(y))' < \alpha$. Moreover, by the hypotheses in (8) and (5), we have

$$M_{xy} = R_0(A^*(x), C(y)) \to R_0(A(x), B(y))$$

= $(A^*(x) \land (C(y))') \lor R_0(A(x), B(y))$
 $< \alpha.$ (9)

Case 2. If $x \in E_y - K_y$, similarly, from the sense of $B^*(y)$ determined by (6), we know $C(y) > B^*(y) \ge A^*(x) \wedge R_0(A(x), B(y))$. (10)

The discussion will be partitioned into two possible cases.

(i) If $A^*(x) \leq C(y)$, then from the proof of (i) in Case 1 of Theorem 1, we know that C(y) satisfies (2).

(ii) If
$$A^*(x) > C(y)$$
, then $R_0(A^*(x), C(y)) = (A^*(x))' \lor C(y)$. From (10), we have $C(y) > B^*(y) \ge R_0(A(x), B(y))$. (11) From this, and noting that $x \notin K_y$, we deduce $A^*(x) \le \alpha$. In addition, using the hypothesis in (5), we get

$$M_{xy} = R_0(A^*(x), C(y)) \rightarrow R_0(A(x), B(y))$$

= $(A^*(x) \land (C(y))') \lor R_0(A(x), B(y))$
 $\leq \alpha$. (12)

Combining the proofs of Case 1 and Case 2, it follows that C(y) satisfies (2). On the other hand, we will prove: for some $y_0 \in Y$ and any $D(y_0) \in \mathcal{F}(Y)$ with $D(y_0) < B^*(y_0)$, $D(y_0)$ cannot satisfy (2). In fact, applying the sense of $B^*(y_0)$ determined by (6), the discussion will be partitioned into two possible cases.

Case 1. There exists $x_0 \in E_{y_0} \cap K_{y_0}$ such that $D(y_0) < A^*(x_0) \wedge (R_0(A(x_0), B(y_0)) \vee \alpha')$. (13)

We will discuss again in two possible cases.

(i) If
$$D(y_0) \leq R_0(A(x_0), B(y_0))$$
. Then
$$R_0(A^*(x_0), D(y_0)) \rightarrow R_0(A(x_0), B(y_0))$$

$$= ((A^*(x_0))' \lor D(y_0)) \rightarrow R_0(A(x_0), B(y_0))$$

$$= 1 > \alpha.$$

(ii) If $D(y_0) > R_0(A(x_0), B(y_0))$, then from (13), it is known that $D(y_0) < \alpha'$. Noting that $x_0 \in K_{y_0}$, we have

$$R_{0}(A^{*}(x_{0}), D(y_{0})) \rightarrow R_{0}(A(x_{0}), B(y_{0}))$$

$$= ((A^{*}(x_{0}))' \lor D(y_{0})) \rightarrow R_{0}(A(x_{0}), B(y_{0}))$$

$$= (A^{*}(x_{0}) \land (D(y_{0}))' \lor R_{0}(A(x_{0}), B(y_{0}))$$

$$> \alpha.$$

Case 2. There exists $x_0 \in E_{y_0} - K_{y_0}$ such that $D(y_0) < A^*(x_0) \wedge R_0(A(x_0), B(y_0))$. (14)

Consequently, we have

$$R_0(A^*(x_0), D(y_0)) \rightarrow R_0(A(x_0), B(y_0))$$

$$= ((A^*(x_0))' \lor D(y_0)) \rightarrow R_0(A(x_0), B(y_0))$$

$$= 1 > \alpha.$$
(15)

So, $D(y_0)$ cannot satisfy (2). All of these show that $B^*(y)$ is the infimum consisting of fuzzy sets in $\mathcal{F}(Y)$ to satisfy (2).

Theorem 2. (formula of infimum for FMP of α -reverse triple I method of restriction 2) Suppose that X, Y are non-empty sets, A and $A^* \in \mathcal{F}(X)$ and $B \in \mathcal{F}(Y)$. For any $y \in Y$, if $x \in F_y$, then the infimum $B^*(y)$ consisting of fuzzy sets in $\mathcal{F}(Y)$ to satisfy (2) is determined by

$$B^{*}(y) = \sup_{x \in F_{y} \cap K_{y}} [A^{*}(x) \wedge \alpha'].$$
 (16)
Here $K_{y} = \{x \in X \mid A^{*}(x) > \alpha\} \text{ and } F_{y} = \{x \in X \mid A^{*}(x) \wedge (A^{*}(x))' > R_{0}(A(x), B(y))\}.$

Proof. For any $y \in Y$ and $B^*(y)$ determined by (16), we will first prove: any $C(y) \in \mathcal{F}(Y)$ with $C(y) > B^*(y)$ must satisfy (2). For $x \in F_y$, we will discuss in different cases as follows.

Case 1. If $x \in F_y \cap K_y$, then applying $B^*(y)$ determined by (16), we know

$$C(y) > B^*(y) \ge A^*(x) \wedge \alpha'$$
. (17)
We will discuss again in two possible cases.

(i) If $A^*(x) \leq C(y)$, then from the proof of

(i) in Case 1 of Theorem 1, we know that C(y) satisfies (2).

(ii) If $A^*(x) > C(y)$, then $R_0(A^*(x), C(y)) = (A^*(x))' \lor C(y)$. Noting (17), we have $C(y) > B^*(y) \ge \alpha'$. It follows that $(C(y))' < \alpha$. By the hypothesis in Case 1 of Theorem 2, and the hypothesis in (5), we have

$$M_{xy} = R_0(A^*(x), C(y)) \to R_0(A(x), B(y))$$

= $(A^*(x) \land (C(y))') \lor R_0(A(x), B(y))$
 $< \alpha.$ (18)

Case 2. If $x \in F_y - K_y$, similarly, from the sense of $B^*(y)$ determined by (16), we know $B^*(y) = 0$. Noting that $x \in F_y$, $x \notin K_y$, and the hypothesis in (5), we have

$$M_{xy} = R_0(A^*(x), B^*(y)) \to R_0(A(x), B(y))$$

= $(A^*(x))' \to R_0(A(x), B(y))$
= $A^*(x) \lor R_0(A(x), B(y)) \le \alpha$. (19)

Combining the proofs of Case 1 and Case 2, we know that C(y) satisfies (2). On the other hand, for some $y_0 \in Y$ with $B^*(y_0) > 0$, any $D(y_0)$ provided $D(y_0) < B^*(y_0)$ cannot satisfy (2). In fact, by the sense of $B^*(y_0)$ determined by (16), there exists $x_0 \in F_{y_0} \cap K_{y_0}$ such that $D(y_0) < A^*(x_0) \wedge \alpha'$. So, noting that $x_0 \in F_{y_0}$ and $x_0 \in K_{y_0}$, and the hypothesis in (5), we obtain

$$R_{0}(A^{*}(x_{0}), D(y_{0})) \rightarrow R_{0}(A(x_{0}), B(y_{0}))$$

$$= ((A^{*}(x_{0}))' \vee D(y_{0})) \rightarrow R_{0}(A(x_{0}), B(y_{0}))$$

$$= (A^{*}(x_{0}) \wedge (D(y_{0}))' \vee R_{0}(A(x_{0}), B(y_{0}))$$

$$> \alpha.$$

So, $D(y_0)$ cannot satisfy (2). Sum up the above proof, $B^*(y) \in \mathcal{F}(Y)$ is the infimum consisting of fuzzy sets to satisfy (2).

2 Supremum for FMT of α -reverse triple I method of restriction

Now, let us consider the generalization problem of FMT, we give the following principle of restriction of the α -reverse triple I method.

Principle of restriction for α -reverse triple I FMT. Suppose that X and Y are non-empty sets, $A \in \mathcal{F}(X)$, B and $B^* \in \mathcal{F}(Y)$. If A^* is the maximal fuzzy set in $\mathcal{F}(X)$ to satisfy (2), then A^* is called the α -solution of (2) for the reverse triple I FMT.

Remark 2. For any $x \in X$, when $A^*(x) \equiv 0$, the left side of (2) will always take its minimal value

 $R_0(A(x), B(y))$; and when $A^*(x) \equiv 1$, it will always take its maximal value $B^*(y) \rightarrow R_0(A(x), B(y))$

$$=\begin{cases} 1, & B^{*}(y) \leq R_{0}(A(x), B(y)), \\ R_{0}(A(x), B(y)), & B^{*}(y) > R_{0}(A(x), B(y)), (B^{*}(y))' \leq R_{0}(A(x), B(y)), \\ (B^{*}(y))', & B^{*}(y) > R_{0}(A(x), B(y)), (B^{*}(y))' > R_{0}(A(x), B(y)). \end{cases}$$
(20)

By (20), when
$$(B^*(v))' > R_0(A(x), B(v))$$

and

 $(A^*(y))' \leq R_0(A(x), B(y)),$ (21) the maximal value of the left side of (2) is $R_0(A(x), B(y)),$ and its minimal value is always $R_0(A(x), B(y)).$ Hence, if (21) holds, for any $\alpha \in [R_0(A(x), B(y)), 1],$ the maximal fuzzy set in $\mathscr{F}(X)$ satisfying (2) is $A^*(x) \equiv 1.$

If (21) does not hold, for the generalization problem of FMT, the range of α should also be confined by (5).

Furthermore, we have the formula of supremum for FMT of α -reverse triple I method of restriction as follows.

Theorem 3. (formula of supermum for FMT of α -reverse triple I method of restriction 1) Suppose that X, Y are non-empty sets, $A \in \mathcal{F}(X)$, B and $B^* \in \mathcal{F}(Y)$. For any $x \in X$, if $y \in E_x$, then the supremum $A^*(x)$ consisting of fuzzy sets in $\mathcal{F}(X)$ to satisfy (2) is determined by

$$A^{*}(x) = \inf_{y \in E_{x} \cap K_{x}} [B^{*}(y) \vee (R_{0}'(A(x), B(y)) \wedge \alpha)]$$

$${}^{*}\chi_{E_{x} \cap K_{x}}$$

$$+ \inf_{y \in E_{x} - K_{x}} [B^{*}(y) \vee R_{0}'(A(x), B(y))]$$

$${}^{*}\chi_{E_{x} - K_{x}}, \qquad (22)$$
where $E_{x} = \{ y \in Y \mid B^{*}(y) \leq R_{0}(A(x), B(y)) \}$
and $K_{x} = \{ y \in Y \mid B^{*}(y) \leq \alpha' \}$.

Proof. For any $x \in X$ and $C(x) < A^*(x)$, we will first prove: C(x) must satisfy (2). For $y \in E_x$, we will discuss in different cases as follows.

Case 1. If $y \in E_x \cap K_x$, then from $A^*(x)$ determined by (22), we have

$$C(x) < A^{*}(x)$$

$$\leq B^{*}(y) \lor (R'_{0}(A(x), B(y)) \land \alpha).$$
(23)

Further, the discussion will be partitioned again into two possible cases.

(i) If $C(x) \leq B^*(y)$, then $R_0(C(x), B^*(y)) = 1$, similar to the proof of (1) in Case 1 of Theorem 1, we get

 $M_{xy} = R_0(C(x), B^*(y)) \rightarrow R_0(A(x), B(y)) \leq \alpha.$

(ii) If $C(x) > B^*(y)$, then $R_0(C(x), B^*(y)) = C'(x) \vee B^*(y)$. Noting (23), we have $C(x) < A^*(x) \leqslant R_0'(A(x), B(y)) \wedge \alpha$. (24)

This implies $C(x) < \alpha$ and $C'(x) > R_0(A(x), B(y))$. Consequently, using the hypothesis in (5), we deduce

$$M_{xy} = R_0(C(x), B^*(y)) \rightarrow R_0(A(x), B(y))$$

= $(C(x) \land (B^*(y))') \lor R_0(A(x), B(y))$
 $< \alpha.$ (25)

Case 2. If $y \in E_x - K_x$, similarly, from the sense of $A^*(x)$ determined by (22), we have $C(x) < A^*(x) \le B^*(y) \lor R_0'(A(x), B(y))$. (26)

We will discuss again in two possible cases.

(i) If $C(x) \leq B^*(y)$, then from (1) in Case 1 of Theorem 3, C(x) satisfies (2).

(ii) If $C(x) > B^*(y)$, then $R_0(C(x), B^*(y)) = C'(x) \vee B^*(y)$. By (26), we have $C(x) < R'_0(A(x), B(y))$. It follows that $C'(x) > R_0(A(x), B(y))$. Noting $y \notin K_x$ and the hypothesis in (5), we have

$$M_{xy} = R_0(C(x), B^*(y)) \to R_0(A(x), B(y))$$

= $(C(x) \land (B^*(y))') \lor R_0(A(x), B(y))$
 $\leq \alpha$. (27)

Combining the discussions of Case 1 and Case 2, we know that C(x) satisfies (2). On the other hand, for some $x_0 \in X$ and any $D(x_0) \in \mathcal{F}(X)$ with $D(x_0) > A^*(x_0)$, $D(x_0)$ cannot satisfy (2). In fact, using the sense of $A^*(x_0)$ determined by (22), the discussion will be partitioned again into two possible cases.

Case 1. There exists
$$y_0 \in E_{x_0} \cap K_{x_0}$$
 such that $D(x_0) > B^*(y_0) \vee (R_0'(A(x_0), B(y_0)) \wedge \alpha).$ (28)

Then, we will discuss in two possible cases.

(i) If
$$D(x_0) \ge R'_0(A(x_0), B(y_0))$$
, then
 $R_0(D(x_0), B^*(y_0)) \rightarrow R_0(A(x_0), B(y_0))$
 $= (D(x_0))' \lor B^*(y_0) \rightarrow R_0(A(x_0), B(y_0))$
 $= 1 > \alpha$.

(ii) If
$$D(x_0) < R'_0(A(x_0), B(y_0))$$
, then
(28) yields $D(x_0) > \alpha$. By $y_0 \in K_{x_0}$, we have
 $R_0(D(x_0), B^*(y_0)) \rightarrow R_0(A(x_0), B(y_0))$
 $= (D(x_0) \land (B^*(y_0))') \lor R_0(A(x_0), B(y_0))$
 $> \alpha$

Case 2. There exists $y_0 \in E_{x_0} - K_{x_0}$ such that $D(x_0) > B^*(y_0) \vee R_0(A(x_0), B(y_0))$. Then $D(x_0) > R_0(A(x_0), B(y_0))$. By noting $y_0 \in E_{x_0}$, we get

$$R_0(D(x_0), B^*(y_0)) \rightarrow R_0(A(x_0), B(y_0))$$

$$= (D(x_0))' \vee B^*(y_0) \rightarrow R_0(A(x_0), B(y_0))$$

$$= 1 > \alpha.$$

So, $D(x_0)$ cannot satisfy (2). To sum up, A^* (x) is the supremum consisting of fuzzy sets in $\mathcal{F}(X)$ to satisfy (2).

Theorem 4. (formula of supremum for FMT of α -reverse triple I method of restriction 2) Suppose that X, Y are non-empty sets, $A \in \mathcal{F}(X)$, B and $B^* \in \mathcal{F}(Y)$. For any $x \in X$, if $y \in F_x$, then the supremum $A^*(x)$ consisting of fuzzy sets in $\mathcal{F}(X)$ to satisfy (2) is determined by

$$A^{*}(x) = \inf_{y \in F_{x} \cap K_{x}} [B^{*}(y) \lor \alpha], \qquad (29)$$
where $F_{x} = \{ y \in Y \mid B^{*}(y) \land (B^{*}(y))' > R_{0}(A(x), B(y)) \}$ and $K_{x} = \{ y \in Y \mid B^{*}(y) < \alpha' \}.$

Proof. For any $x \in X$ and $C(x) < A^*(x)$, we will first prove: C(x) must satisfy (2). For $y \in F_x$ we will discuss in different cases as follows.

Case 1. If $y \in F_x \cap K_x$, then from $A^*(x)$ determined by (29), we have

$$C(x) < A^*(x) \le B^*(y) \lor \alpha$$
. (30)
We will discuss again in two possible cases.

(i) If $C(x) \leq B^*(y)$, then from the proof of (1) in Case 1 of Theorem 3, we know that C(y) satisfies (2).

(ii) If $C(x) > B^*(y)$, then $R_0(C(x), B^*(y)) = C'(x) \lor B^*(y)$. Noting (30), we have $C(x) < A^*(x) \le \alpha$. From this, and applying the hypothesis of Case 1 of Theorem 4, and the hypothesis in (5), we get

$$M_{xy} = R_0(C(x), B^*(y)) \rightarrow R_0(A(x), B(y))$$

= $(C(x) \land (B^*(y))') \lor R_0(A(x), B(y))$
 $< \alpha.$ (31)

Case 2. If $y \in F_x - K_x$, then using $A^*(x)$ determined by (29), we have $A^*(x) = 1$. Noting $y \in F_x$ and $y \notin K_x$ the hypothesis in (5), we obtain

$$M_{xy} = R_0(A^*(x), B^*(y)) \rightarrow R_0(A(x), B(y))$$

$$= B^*(y) \rightarrow R_0(A(x), B(y))$$

$$= (B^*(y))' \lor R_0(A(x), B(y))$$

$$= (B^*(y))' \leqslant \alpha. \tag{32}$$

Combining the discussions of Case 1 and Case 2, we know that C(x) satisfies (2). On the other hand, for some $x_0 \in X$ and any $D(x_0) \in \mathcal{F}(X)$ with $D(x_0) > A^*(x_0)$, $D(x_0)$ cannot satisfy (2). In fact, using the sense of $A^*(x_0)$ determined by (29), there exists $y_0 \in F_{x_0} \cap K_{x_0}$ such that $D(x_0) > B^*(y_0) \vee \alpha$. Moreover, by $y_0 \in F_{x_0}$ and $y_0 \in K_{x_0}$, we have

$$R_{0}(D(x_{0}), B^{*}(y_{0})) \rightarrow R_{0}(A(x_{0}), B(y_{0}))$$

$$= (D(x_{0}))' \vee B^{*}(y_{0})) \rightarrow R_{0}(A(x_{0}), B(y_{0}))$$

$$= (D(x_{0}) \wedge (B^{*}(y_{0}))') \vee R_{0}(A(x_{0}), B(y_{0}))$$

$$> \alpha.$$

So, $D(x_0)$ cannot satisfy (2). Sum up the above proof, $A^*(x)$ is the supremum consisting of fuzzy sets in $\mathcal{F}(X)$ to satisfy (2).

References

- 1 Zadeh, L. A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Systems Man Cybernet, 1973, 3 (1); 28.
- 2 Mandani, E. H. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput., 1977, 26 (12): 1182.
- 3 Mizumoto, M. et al. Comparison of fuzzy reasoning methods. Fuzzy Sets and Systems, 1982, 8 (3): 253.
- 4 Wu, W. M. Fuzzy reasoning and fuzzy relational equation. Fuzzy Sets and Systems, 1986, 20 (1): 67.
- 5 Ying, M. S. Reasonableness of the compositional rule of fuzzy inference. Fuzzy Sets and Systems, 1990, 36 (2): 305.
- 6 Wang, G. J. Triple I method with total inference rules of fuzzy reasoning. Science in China, Series E, 1999, 29 (1): 43.
- 7 Song, S. J. et al. Theory of restriction degree of triple I method with total inference rules of fuzzy reasoning. Progress in Natural Science, 2001, 11 (1): 58.