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Abstract

A theory of reverse triple I method of restriction for implication operator Ry is proposed. And the general computation

formulas of infimum for fuzzy modus ponens and supremum for fuzzy modus tollens of a-reverse triple I method of restriction are obtained

respectively.
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Since Zadeh!!! proposed the method of composi-
tional rule of inference (CRI) for fuzzy reasoning, the
method has been generalized respectively from diver-
sified aspects in Refs. [2 ~4]. Generally, because
this method does not have the reversibility properties,
the MP-approximation property of the method of CRI
was studied using certain common compositional oper-
ators and implication operators in Ref. [5]. More-
over, in order to avoid some drawbacks of the method
of CRI, Wang[é] proposed first triple I method with
total inference rule that utilizes the implication opera-
tor in every step of the reasoning. Afterwards, the
theory of restriction degree of triple I method was
further presented by the authors!”?, its generalization
form should be expressed as the following optimal
problem.

For any « €(0,1], A€CF(X), BEHAY), and
A€ ZF(X) (or B € #(Y)), seek the optimal
B €FY) (or A* €EF(X)) satisfying

(A(z) > B(y)) > (A" () >B " (y)) < a,
(1)
forany x € X and y€ Y, where #(X) and #(Y)
denote respectively the collections consisting of all
fuzzy subsets of X and Y. And for the implication
operator Ry:[0,11>—[0,11:
1, a<b,
Rola,b) = a’' Vb, a>b,
General computation formulas of supremum for fuzzy
modus ponens (FMP) and infimum for fuzzy modus
tollens (FMT) of a-triple I method are obtained re-
spectively in Ref. [7].

(herea’=1-a).

In this paper, the theory of reverse triple 1
method of restriction is proposed, its generalization
form should be represented as the follows.

Under the hypotheses of (1), seek the optimal
BY"EFY)(or A¥ EF(X)) such that
(A*(z) >B"(y)) > (A(x) > B(y)) < qa,

(2)
forany r€ X and y€ Y.

The computation formulas of infimum for FMP
and supremum for FMT of a-reverse triple I method
of restriction are given respectively, using the impli-
cation operator Ry in this paper.

1 Infimum for FMP of a-reverse triple I
method of restriction

Now, we consider the generalization problems of
reverse triple I method of restriction, i.e. for given a
€ (0, 1], seek the optimal solution satisfying (2).
At first, for the generalization problem of FMP, we
give the following principle of restriction of a-reverse
triple I method.

Principle of restriction for a-reverse triple I
FMP. Suppose that X and Y are non-empty sets,
A,A€Z(X), BEZ(Y). If B* is the minimal
fuzzy set in #(Y) to satisfy (2), then B” is called
the a-solution of (2) for the reverse triple I FMP.

Remark 1. For any y€ Y when B (y)=1,
the left side of (2) will always take its minimal value
Ro(A(x),B(y)); when B” (y)=0, it will always
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take its maximal value

(A" (x)) — Ro(A(2), B(y))

1,
= {Aﬂ*(x),
Ro(A(x),B(y)),
By (3), when
(A" (x)) > Ro(A(x),B(y))
and
A" (2) < Ri(A(x),B(y)), (4)
the maximal value of the left side of (2) is
Ro(A(x),B(y)), and its minimal value is always
Ro(A(z),B(y)). So, if (4) holds, for any a €
[Ry(A(x), B(y)),1], the minimal fuzzy set in
HY) satisfying (2) is B* (y)=0. If (4) does not
hold, for the generalization problem of FMP, the
range of a should be confined as

Furthermore, we have the formula of infimum
for FMP of a-reverse triple | method of restriction as
follows.

Theorem 1. (formula of infimum for FMP of «-
reverse triple I method of restriction 1)  Suppose
that X, Y are non-empty sets, A and A* € F(X)
and BEHY). Forany y€ Y, if x € E,, then the
infimum B " (y) consisting of fuzzy sets in #(Y) to
satisfy (2) is determined by
B*(y) =Iesggky[A*(x) A (Ro(A(z),B(y)) V a')]

" XENK,

+ sup [A"(2) A (Ro(A(x), B(¥))]

* XE-K) (6)
where K, = {x € X|A* (2)>al and E, = {z € X|
(A" (2))<Ro(A(x),B(yN}.

Proof. For any y€ Y, we will first prove: any
C(y) € F(Y) with C(y) > B" (y) must satisfy
(2). For x € E,, we will discuss in different cases as
follows.

Case 1. If t€E,NK,, then using B" (y) de-
termined by (6), we have
C(y)>B*(y)
> A" (z) A (Re(A(z),B(3)) V o).
(7
Further, the discussion will be partitioned again into
two possible cases.

(A" (2)) < Ro(A(x), B(y)),
(A" (2)) > Ro(A(x),B(¥)),A"(z) > Ro(A(x),B(y)),
(A" (2)) > Ro(A(z),B(y)),A"(2) < Ro(A(x), B(»)).

(3)

(i) f A" ()< C(y) then Re(A" (z),
C(y))=1, consequently
M,,= Ro(A" (x),C(y)) = Ro(A(x), B(y))
= 1— Ro(A(z),B(y))
= Ry(A(z),B(y)) < a.

(i) f A*(z)>C(y), then Rg(A™ (x),
C(y))=(A"(x)) VC(y). By (7), we have
C(y) > B*(y) = Ro(A(z2),B(y)) V a’.
(8)
This implies that (C(y)) < a. Moreover, by the
hypotheses in (8) and (5), we have
M., =Ro(A"(z), C(¥))>Ro(A(x), B(y))
=(A"(z)AN(C(y)))VRe(A(x), B(y))
<a. 9)

Case 2. If x € E, — K,, similarly, from the
sense of B (y) determined by (6), we know
C(y) >B"(y) = A"(z) A Re(A(2), B(y)).
(10)
The discussion will be partitioned into two possible
cases.

(i) f A*(2)<XC(y), then from the proof of
(i) in Case 1 of Theorem 1, we know that C(y) sat-
isfies (2).

Gi) f A*(x)>C(y), then Re(A™ (x),
C(y))=(A*(x)) VC(y). From (10), we have
C(y) > B*(y) = Ro(A(z),B(y)). (11)
From this, and noting that = & K,, we deduce
A*(x2)< . In addition, using the hypothesis in
(5), we get
M., = Ro(A" (x), C(»))~Ro(A(2), B()
=(A" () AN(C(y)) )V Re(A(z), B(y))
<a. (12)

Combining the proofs of Case 1 and Case 2, it
follows that C(y) satisfies (2). On the other hand,
we will prove: for some yo € Y and any D () €

CFY) with D(y¢)<B™(y0), D(yo) cannot satisfy

(2). In fact, applying the sense of B* (o) deter-
mined by (6), the discussion will be partitioned into
two possible cases.
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Case 1. There exists o€ Eyoﬂ K,, such that

D(yp) < A" (x9) AN (Ro(A(zxg), B(y9)) V ).
(13)

We will discuss again in two possible cases.

(i) If D(y)<XRy(A(xg),B(yy)). Then
Ro(A " (x9), D(30))>Ro(A(x¢), B(30))

=((A" (29)) VD(y9))>Ro(A(x0), B(y9))

=1>a.

(ii) If D(y¢) >Ro(A(xg), B(yp)), then from
(13), it is known that D(yg)<a’. Noting that xg
€K, , we have

Ro(A ™ (x¢), D(y¢))>Ro(A(xg), B(yp))
=((A" (x9)) VD(v9))>Ro(A(xp), B{(30))

=(A" (zo) AN(D(0))" VRo(A(z0), B(y0))
>a.

Case 2. There exists o€ Ey0 -K Y such that

D(yp) < A" (xg) A Ro(A(.Zo),B(yo))-
(14)
Consequently, we have
Ro(A ™ (x0), D(30))>Ro(A(x¢), B{w))
=((A"(20)) VD(y0))>Ro(A(z0), B(30))
=1>a. (15)

So, D(yg) cannot satisfy (2). All of these show

that B ™ (y) is the infimum consisting of fuzzy sets in
FY) to satisfy (2).

Theorem 2. (formula of infimum for FMP of
a-reverse triple I method of restriction 2) Suppose
that X, Y are non-empty sets, A and A" € F(X)
and BEHY). Forany y€ Y, if x €F,, then the
infimum B " (y) consisting of fuzzy sets in #{Y) to
satisfy (2) is determined by

B (y) = LSUR, [A"(x) A '] (16)

Here K,= {z € X|A"(z) >al and F, = {z € X|
A" () N(A"(2)) >Ro(A(x), B(y)}.

Proof. For any y€ Y and B* (y) determined
by (16), we will first prove: any C(y) EZ(Y) with
C(y)>B" (y) must satisfy (2). For x € F,, we

will discuss in different cases as follows.

Case 1. If x€ F,(N K,, then applying B" (y)
determined by (16), we know
C(y) >B"(y») =A"(z) A a. (17)

We will discuss again in two possible cases.

(i) f A" (z)<XC(y), then from the proof of

(i) in Case 1 of Theorem 1, we know that C(y) sat-
isfies (2).

Gi) f A*(x)>C(y), then Ry (A~ (x),
C(y))=(A"(x)Y VC(y). Noting (17), we have
C(y)>B*(y)=a’. It follows that (C(y)) <.
By the hypothesis in Case 1 of Theorem 2, and the
hypothesis in (5), we have

M,,=Ro(A” (z),C(y))>Ro(A(z), B(y))
=(A ()N (C(¥))) VR (A(z), B(y))
<a. (18)

Case 2. If x € F, — K,, similarly, from the
sense of B (v ) determined by (16), we know
B*(y)=0. Noting that € F,,, z ¢ K,, and the
hypothesis in (5), we have

M., =Ro¢(A"(2),B"(y))>Ro(A(z), B(y))
=(A"(z2))~>Ro(A(x), B(y))
=A " (z)VRy(A(z),B(y))<a. (19)

Combining the proofs of Case 1 and Case 2, we
know that C(y) satisfies (2). On the other hand,
for some y, € Y with B™ (y4) >0, any D(yy) pro-
vided D(v¢) < B” (o) cannot satisfy (2). In fact,
by the sense of B* (yg) determined by (16), there
exists 1o € Fyoﬂ K, such that D(yg) <A™ (x¢) A
a’. So, noting that o€ F, and zo€ K, , and the
hypothesis in (5), we obtain
Ro(A " (z0), D(y9))>Ro(A(x0), B(yo))

=((A"(29)) VD(y0))>Ro(A(z0), B(y0))

= (A" (x20) A(D(y¢))" VRo(A(x9), B(yg))
>a.

So, D (yp) cannot satisfy (2). Sum up the
above proof, B* (y)EH Y ) is the infimum consist-
ing of fuzzy sets to satisfy (2).

2 Supremum for FMT of a-reverse triple 1
method of restriction

Now, let us consider the generalization problem
of FMT, we give the following principle of restriction
of the a-reverse triple I method.

Principle of restriction for a-reverse triple I
FMT. Suppose that X and Y are non-empty sets, A
€EF(X), Band B*€ZF(Y). If A” is the maximal
fuzzy set in #(X) to satisfy (2), then A” is called
the a-solution of (2) for the reverse triple I FMT.

Remark 2. For any £ € X, when A~ (x)=0,
the left side of (2) will always take its minimal value
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Ro(A(x),B(y)); and when A" (x)=1, it will always take its maximal value

B (y) = Ro(A(x), B(y))

1, B*(y)<RO(A(I)’B(y))’

= RO(A(JT),B(.)’)),
(B" (),

By (20), when

(B*(y)) > Ro(A(x), B(y))
and

(A" (y)) < Ro(A(z), B(y)), (21)
the maximal value of the left side of (2) is
Ry(A(x), B(y)), and its minimal value is always
Ry(A(x),B(y)). Hence, if (21) holds, for any
a€[Ry(A(z),B(y)),1], the maximal fuzzy set in
F(X) satisfying (2) is A™ (z)=1.

If (21) does not hold, for the generalization
problem of FMT, the range of a should also be con-
fined by (5).

Furthermore, we have the formula of supremum
for FMT of a-reverse triple I method of restriction as
follows.

Theorem 3. (formula of supermum for FMT of
a-reverse triple I method of restriction 1) Suppose
that X, Y are non-empty sets, A € #(X), B and
B*€%(Y). For any x € X, if y€ E,, then the

supremum A * () consisting of fuzzy sets in #(X)
to satisfy (2) is determined by

A*(2)=_inf [B"(5)V(Ry(A(2),B(3))Na)]
" XE,NK,
+ nf _[B"(3) VR (A(2), B(5))]
.XE:—K:’ (22)
where E, = |y € Y| B" (y)<XRo(A (x), B(y)}
and K, = {yE€ YIB" (y)<a'}.

Proof. For any x € X and C{z)< A" (x), we
- will first prove: C(x) must satisfy (2). For yE E,,
we will discuss in different cases as follows.

Case 1. If y€E E,NK,, then from A" (z) de-
termined by (22), we have
Clz)< A*(x)
<B* () V (Ry(A(2), B(3)) A a).
(23)
Further, the discussion will be partitioned again into
two possible cases.

B (y) > Ro(A(x),B(y)),(B" (3)) < Ro(A(x), B(y)), (20)
B"(y) > Ro(A(2),B(¥)),(B"(3)) > Ro(A(x),B(y)).

(i) If C(z)<<B" (y), then Re(C (x),
B*(y)) =1, similar to the proof of (1) in Case 1 of
Theorem 1, we get
M,,=Ro(C(z),B” (y))>Ro(A(z), B(y))<a.

(ii) f C(x)>B" (y), then Ry(C(zx),
B*(y))=C(x)VB*(y). Noting (23), we have

Clz) < A*(2) < Ry(A(2),B(»)) A a.
(24)
This implies C{z)<a and C'(z2) > Ro(A(x),
B(y)). Consequently, using the hypothesis in (5),
we deduce
M,,=Ro(C(zx),B" (y))>Ro(A(z),B(y))
=(C(z)AN(B*(¥)))VRo(A(z),B(y))
<a. (25)

Case 2. If y € E, — K., similarly, from the
sense of A~ (z) determined by (22), we have
C(z) < A" (z)<B"(y) V R,(A(x),B(y)).

(26)

We will discuss again in two possible cases.

(i) If C(z)<B” (y), then from (1) in Case 1
of Theorem 3, C{(x) satisfies (2).

Gi) f C(xz)>B”" (y), then Ry (C (),
B (y))=C'(2)V B”" (y). By (26), we have
C(z)<R,(A(z),B(y)). It follows that C’(z)>
Ry(A(x),B(y)). Noting ¥y & K, and the hypothe-
sis in (5), we have
M,,=Ro(C(x),B"(y))>Ro(A(x),B(y))

=(C(z)N(B"(y))Y)VRe(A(x),B(y))
<a. 27

Combining the discussions of Case 1 and Case 2,
we know that C (x) satisfies (2). On the other
hand, for some x¢€ X and any D(x¢) €K X) with
D(xg)>A" (z4), D(xy) cannot satisfy (2). In
fact, using the sense of A* (xy) determined by
(22), the discussion will be partitioned again into
two possible cases.

Case 1. There exists yo€ E, N K, such that

D(z¢) > B*(39) V (R,(A(zq), B(30)) A ).
(28)
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Then, we will discuss in two possible cases.

(i) If D(z2¢)=R,(A(z¢), B(%)), then
RO(D(xo), B* (yo))—’Ro(A(Io), B(yo))

=(D(x9)) VB (y0)>Ro(A(z9), B(30))
=1>c¢.

(it) If D (z¢) < Ry (A (z0), B(y0)), then
(28) yields D(xg) >a. By y € KIo’ we have

RO(D(Io), B* (ya))>Ro(A(xp), B(yo))

=(D(20) A(B* (30)) )V Re(A(x0), B(yg))
>a.

Case 2. There exists yo € E, - K, such that

D(z0) > B* (30) V Ry (A (z0), B (0)). Then
D(xo)>R;(A(x0),B(y0)). By noting yOEEIO,
we get

Ro(D(Io)aB*(yo))—’Ro(A(Io)aB(yo))

=(D(x0)) VB (30)>Ro(A(x0), B(y0))
=1>a.

So, D(zq) cannot satisfy (2). Tosumup, A"
(x) is the supremum consisting of fuzzy sets in A X)
to satisfy (2).

Theorem 4. (formula of supremum for FMT of
a-reverse triple I method of restriction 2) Suppose
that X, Y are non-empty sets, A € $(X), B and
B €#(Y). For any z € X, if y € F,, then the
supremum A * {x) consisting of fuzzy sets in F{ X)
to satisfy (2) is determined by

A'(z) = inf [B"(y)V «al, (29)
YEF,NK,

where F, = {y € Y| B" (y) A(B" (y)) >
Ry(A(z),B(y))tand K, ={y€ Y|B" (y)<
a'l.

Proof. Forany z € X and C(z)< A" (z), we

will first prove; C{x) must satisfy (2). For y& F,
we will discuss in different cases as follows.

Casel. If y&€ F,NK,, then from A™ (x) de-
termined by (29), we have
Clz) < A" (z)<B"(y) Va. (30)
We will discuss again in two possible cases.

(i) If C(x)<XB” (y), then from the proof of
(1) in Case 1 of Theorem 3, we know that C(y)
satisfies (2).

Gi) If C(x)>B" (y), then Roy(C (z),
B*{(¥))=C(z)VB”(y). Noting (30), we have
C(z)< A" (z)< «. From this, and applying the
hypothesis of Case 1 of Theorem 4, and the hypothe-
sis in (5), we get

M,,=Ro(C(x),B" (y))>Ro(A(x),B(y))
=(C(z)N(B"(y)))VRo(A(z),B(y))
<a. (31)

Case 2. If y€ F.— K., then using A” (x) de-
termined by (29), we have A * (z)=1. Noting yE€
F, and y& K, the hypothesis in (5), we obtain

M,,=Ro(A"(2),B" ())>Ro(A(z), B(y))
=B (y)>Ro(A(x),B{y))
=(B" ()Y VRy(A(x),B(y))
=(B"(y))Y<a. (32)

Combining the discussions of Case 1 and Case 2,
we know that C (x ) satisfies (2). On the other
hand, for some 2¢€ X and any D(xq) €EF(X) with
D(xg) > A" (z¢), D(xy) cannot satisfy (2). In
fact, using the sense of A* (xzo) determined by
(29), there exists yo & F, N K, such that D(zy) >

B*(yg) V @. Moreover, by yo€F , and yOGKIO,

we have
Ro(D(z9), B™ (30))—=Ro(A(xy), B(y0))
=(D(x¢)) VB (30))>Ro(A(x¢), B(x))

=(D(z9) A(B™ (30)) )V Ro(A(z0), B(30))
>a.

So, D (zg) cannot satisfy (2). Sum up the
above proof, A" (x) is the supremum consisting of
fuzzy sets in Z{X) to satisfy (2).
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